1. General info

Welcome to the workshop! The goal of this guide is to walk you through the deployment of
Rancher, two Kubernetes clusters, Longhorn and a couple applications. This is not the definitive
guide to Kubernetes, but will at a minimum serve as a way to build a cluster which can be used
for application development, testing, and production (with higher VM specifications). One
Rancher cluster can support multiple worker clusters. We will be utilizing Ubuntu, but clusters
can be of a variety of Linux distributions and in specific cases Windows. Windows is out of
scope for this workshop and not recommended for this process in general. A better practice is to
build for a native Linux deployment, in our case .Net Core, and avoid the Windows overhead
and complexity for containers. Use the right tool for the job.

We will be connecting to the servers (soon to become nodes!) using SSH. | recommend using
Putty. OpenSSH can be launched via PowerShell as well in Windows 10 and Windows 11 as
well, but is less friendly.

The credentials for the workshop are provided below. They are the same for all
participants.The password is case sensitive.

User: k8workshop

Password: Workingk8!!

2. Prepare the control cluster

The control cluster is what hosts the Rancher application and monitoring for Rancher.
That is the sole purpose. Any actual workloads will operate on the Worker cluster(s). For
a Rancher deployment in our environment, we will use the RKE2 install, Rancher
Kubernetes Engine 2, to host the Rancher instance on a 3 node cluster.

1. SSH into your 15tNode of the Control Plan cluster. This should be {Initials}-CTL-1.

2. If prompted for Yes/No of a SSL thumbprint, please accept

PuTTY Security Alert X

The server's host key is not cached in the registry. You
! have no guarantee that the server is the computer you

think it is.

The server's ssh-ed25519 key fingerprint is:

ssh-ed25519 255

9d:17:78:06:dc:37:4e:65:23:88:43:96:22:48:82:a5

If you trust this host, hit Yes to add the key to

PuTTY's cache and carry on connecting.

If you want to carry on connecting just once, without

adding the key to the cache, hit No.

If you do not trust this host, hit Cancel to abandon the

connection.

rorkshop
orkshog).32.12.111's

Welcome to 1 2 /Linux 4.15.0-188-generic x86 64)

https://ubuntu.com/a
1 as of Tue Jun 28 10:49:21 EDT

Processes: 176

5.0% of 96.94GR Users . 0

IP address for ensl92: 10.32.12.111

- read how we shrank the memory
it the smallest full K8s around.

ps://ubuntu.com/blog/microk8s-memory-optimisation
immediately

nal u tes run: apt st upgradable

r 10.22.4.53

3. Disable swap and then reboot. This can be done with either Vim or Nano
o kBworkshop@DS-CTL-1: ~

k8workshop@DS-CTL-1:~$ sudo swapoff -a

[sudo] password for k8workshop:
k8workshop@DS-CTL-1:~$ sudo rm /swap.img
k8workshop@DS-CTL-1:~$ sudo vim /etc/fstabl

sudo swapoff -a
sudo rm /swap.img

4. Edit /etc/fstab
a. Using Vim
sudo vim /etc/fstab
Insert a # before the /swap. Press i to enter —InsertMode—

Press “Escape colon w q” then enter
b. Or using Nano just type # in front of the /swap
Then control+x, y, Enter.

sudo nano /etc/fstab

B oucilios 8666
" GNU pano 2.9.3

Modified

2G3XGS5bcVOrPMa0dYSN3Ixd1l 7r9PBY9anRBxgWO$§

263a /boot extd defaults 0 1

5. Run this command to verify that the swap is off. There should be no output; a direct
return to prompt.

k8workshop@DS-CTL-1:~§ sudo swapon --show

sudo swapon --show

6. Reboot the VM using:

7. Repeat steps 1 through 6 with your CTL-2 and CTL-3 servers, as well as WRK-1
through WRK-3.

3. Deploy the control cluster

Now that we have disabled swap on the 3 control plane and 3 worker nodes, we can
deploy Rke2 Kubernetes to the control cluster.
1. Become root:

sudo -i

2. Download the Rancher Kubernetes Engine 2 (RKE?2) installation script and deploy.
curl -sfL https://get.rke2.io | sh -

3. Create a path for the configuration file.

mkdir -p /etc/rancher/rke2/

4. Configure the config.yaml for rke2
**** Please note the first rancher node needs to have the server line commented out. ***

vim /etc/rancher/rke2/config.yaml

Contents of the yaml file:

token: k8workshop22
tls-san:
kubeapi-{YourInitialsHere}.some.domain

On nodes CTL-2 and CTL-3:

token: k8workshop22
tls-san:

kubeapi-{YourInitialsHere}.some.domain
server: https://kubeapi-{YourInitialsHere}.some.domain:9345

Comments:

The token represents your cluster password for them to know it’s safe to talk to the
other. It's used for bootstrapping as well. The tls-san is the DNS name for your
Kubernetes API endpoint. In a production scenario it will be load balanced across the
control cluster. This is part of the lifeblood of your environment and must be highly
available.

5. Start the cluster service on CTL-1.

systemctl enable rke2-server.service

systemctl start rke2-server.service

Comments:
It can take a minute or two for the service to start up. If everything goes as planned, you
will see a return to the prompt and no error messages. If you encounter an error, it will
say something about “journalctl -xe”.You would then need to use that command
to start troubleshooting the issue.

6. Execute the same systemctl enable and start commands on CTL-2 and CTL-3
7. Execute a kubectl command to verify that RKE2 has started on all 3 nodes:

/var/lib/rancher/rke2/bin/kubectl --kubeconfig

/etc/rancher/rke2/rke2.yaml get nodes

8. The get nodes output should look like the following once all nodes

areresponding or bootstrapping.

root@DS-CTL-1:~# /var/lib/rancher/rke2/bin/kubectl --kubeconfig /etc/rancher/rke2/rke2.yaml get nodes
STATUS ROLES AGE VERSION
Ready control-plane,etcd,master 52s v1.23.7+rke2r2

ds-ctl-2 Ready control-plane,etcd,master 36s v1.23.7+rke2r2

ds-ctl-3 NotReady control-plane,etcd, master 10s v1.23.7+rke2r2
root@DS-CTL-1:~# [

9. Perform an export to add RKE2'’s bin folder to PATH

export PATH=$PATH:/var/lib/rancher/rke2/bin/

10. On CTL-2 and CTL-3 perform the following command to create a
necessaryfolder:

mkdir /root/.kube

11. On all 3 nodes perform this command to persist the RKE2 config into a
moreconvenient folder for Kubectl access.

cp /etc/rancher/rke2/rke2.yaml /root/.kube/config

4. Configure the pre-requisites and deploy Rancher

1. Deploy Helm 3, which is the core component for deploying Kubernetes applications
(Helm Charts).

curl https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3 | bash

2. Add the jetstack certificate manager repository

helm repo add jetstack https://charts.jetstack.io

3. Add the Rancher repository (stable release)

helm repo add rancher-stable https://releases.rancher.com/server-charts/stable
4. Fetch the two container images (Jetstack and Rancher).

helm fetch jetstack/cert-manager --version v1.8.2

helm fetch rancher-stable/rancher --version 2.6.5
helm repo update

5. Install the Cert Manager image (Helm Chart)

helm install \ cert-manager
jetstack/cert-manager \ --namespace
cert-manager \

--create-namespace \
--version v1.8.2 \
--set installCRDs=true

6. Create the namespace for Rancher

kubectl create ns cattle-system

7. Install the actual Rancher application via the image (Helm Chart)

helm install rancher rancher-stable/rancher \
--namespace cattle-system \
--set hostname=rancher-ds.some.domain \

--version 2.6.5 \
--set bootstrapPassword=k8workshopboot

8. The bootstrap password is configured here as k8workshopboot. You would
wantsomething a little more secure in a production environment. The purpose is for
initial admin password during deployment. This is the password you will use for
initial login to Rancher.

5. Accessing Rancher

Once you complete the prior section, your Rancher install should be online. Now we will
proceed to get into the Rancher user interface and use it to deploy our worker cluster. A
production Rancher environment has one cluster dedicated to Rancher.

= JEF RANCHER

Welcome to Rancher ’

Learn more about the improvements and new capabilities in this version.

Getting Started Community Support

Take a look at the the quick getting started guide. For Cluster Manager users, learn more about where you can
find your favorite features in the Dashboard Ul. Learn More

You can change what you see when you login via preferences Preferences X

Clusters 1 Import Existing i
Commercial Support
State Name o Provider Kubernetes Version CPU Memory Pods)
Active) oca rke2 v1.23.7+rke2r2 12 cores 23GiB 47/330

We’'re going to start with the Create button directly above the existing “local” cluster, which is
also our Rancher host cluster.

= Cluster Management

@ Clusters 1

Cloud Credentials Cluster: Create

Drivers
Create a cluster in a hosted Kubernetes provider

Pod Security Policies

RKE1 Configuration o
Advanced v
I K‘ Amazon EKS P Azure AKS @ Google GKE

ree1 @D Rke2/K3s

Azure 9 DigitalOcean

Provision new nodes and create a cluster using RKE2/K3s

. Amazon EC2
Harvester ‘ Linode ‘ VMware vSphere

Use existing nodes and create a cluster using RKE2/K3s

@ Custom

From here we will turn ON the RKE1 vs RKE2/K3s toggle such that it turns blue. That will give
us the option for Custom at the bottom and the ability to deploy a worker cluster (and expand it)

with a simple command.

Cluster: Create Custom

Cluster Name Cluster Description

Cluster Configuration

I Basics
Member Roles

Kubernetes Version Cloud Provider
v f v
v1.23.7+rke2r2 {None)
Container Network
s v
calico
et
bels & Ann .
Security
Networking
Default Pod Security Palicy Worker CIS Profile
= v v
Registries RKE2 Default (None)

Project Network Isolation

System Services
CoreDNS NGINX Ingress @ Metrics Server

We will actually use the default configuration for most steps. There are a lot of things that can
be customized, but are not specifically relevant here. We must enter a cluster name (all
lowercase) and optionally a description. Here is a valid example:

Cluster Name * uster Descrip
ds-wrk-cluster David's worker cluster

We will then want to configure the Registration tab of the worker cluster.

Step 1

Node Role
Choose what roles the node will have in the cluster. The cluster needs to have at least one node with each role.

etcd Control Plane Worker

Show Advanced

Step 2

Registration Command

Run this command on each of the existing Linux machines you want to register.

curl --insecure -fL https://rancher-ds.j pn/system-agent-install.sh | sudo sh -s - --
server https://rancher-ds.g ds Sesdl U Ba B&e --label 'cattle.io/os=linux' --token
wbct666c8xhgbzca8pflwkjrfhl8xj98knma9jf2rgqps9ksgmjbecs --ca-checksum
8976271af84fbac775f1b6cb74080b7cf1e91d3556c609737ddBOb2ab73eebab --etcd --controlplane --worker

@ Insecure: Select this to skip TLS verification if your server has a self-signed certificate.

Run this command in PowerShell on each of the existing Windows machines you want to register. Windows nodes can only be
workers.

The cluster must be up and running with Linux etcd, control plane, and worker nodes before the registration command for adding Windows workers
will display.

In Step 1., select all 3 roles. It does no harm for these to be present on every node. You also
must have at least 1 node with each role for the cluster to start properly. If you neglect to pick
all 3 for the initial script, you will need to revert to a snapshot and redeploy WRK-1
through WRK-3.

In Step 2., be sure to CHECK the Insecure: box. That will enable the cluster to use a self-signed
certificate.

You will then copy and paste the command in the code box. It is specific to each cluster, so |
cannot provide it for you in this guide. Here is a screenshot of what it will look like on your nodes
when ran. It must be executed via root.

root@DS-WRK-3:~# curl --insecure —-fL https://rancher-ds.j Ju/system-agent-install.sh | sudo sh -5 - —-s
erver https://rancher-ds.| R --label 'cattle.io/os=linux' --token wbct666c8xhqézci8pflukjrfhl8xj98knmu9
jf2rggps9ksgmjbcs --ca-checksum 8976271af8ufbac775f1b6cb74080bT7cf1e91d3556c609737ddeeb2ag73ee6ab —-worker
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Left Speed

lee 27723 a 27723 2] 8 1592k -— 1592k
[INFO] Label: cattle.io/os=linux
[INFO] Role requested: worker
[INFO] Using default agent configuration directory /etc/rancher/agent
[INFO] Using default agent var directory /var/lib/rancher/agent
[INFO] Determined CA is necessary to connect to Rancher
[INFO] Successfully downloaded CA certificate
[INFO] Value from https://rancher-ds. {cacerts is an x589 certificate
[INFO] Successfully tested Rancher connection
[INFO] Downloading rancher-system-agent from https://rancher-ds.j 0 /assets/rancher-system-agent-amdeu
[INFO] Successfully downloaded the rancher-system-agent binary.

Generating Cattle ID

Successfully downloaded Rancher connection information

systemd: Creating service file

Creating environment file /etc/systemd/system/rancher-system-agent.env

Enabling rancher-system-agent.service

symlink /etc/systemd/system/multi-user.target.wants/rancher-system-agent.service + fetc/systemd/system/rancher-s
ystem-agent.service.
[INFO] Starting/restarting rancher-system-agent.service
root@DS-WRK-3:~#

If everything executes correctly on the 3 nodes (the same command is used across all nodes in
the same cluster), you will see a screen like this. The Ready may be false for a few minutes
while everything comes up.

Condition Status Updated Message
AgentDeployed True 51 secsago
BackingNamespaceCreated True 4.3 mins ago
Connected True 39 secs ago
Created True 31secsago
CreatorMadeOwner True 4.3 mins ago
DefaultProjectCreated True 4.3 mins ago
GlobalAdminsSynced True 1 mins ag
InitialRolesPopulated True 4.3 mins ago
NoDiskPressure True 4.2 mins ago
NoMemoryPressure True 4.2 mins ago
Provisioned True 4 mins ago
Ready True 31secsago
Reconciling False 31secsago
RKECluster True 22 secs ago
SecretsMigrated True 4.2 mins ago
Stalled False 4.3 mins ago
SystemAccountCreated True 1 mins ago
SystemProjectCreated True 4.3 mins ago
Updated Unknown 22 secsago [Waiting] configuring etcd node(s) custom-7eef53b96e79.custom-983569f3d4d3
Wiaiting True 31secsago

After a few minutes you should see this:

State Name Node OS Roles Age

Running custom-7eef53b%26e79 ds-wrk-2 Linux All 6 mins
Running Linux All émins
tom-f697b262a1f5 ds-wrk-1 Linux All 6 mins

At this point the worker cluster is READY! It's exciting for sure. Now we can deploy container
native persistent storage. After that, it's all fun and games as we configure monitoring and
deploy this workshop’s version of a Hello World app: A phpBB instance with a separate
mariaDB database.

6. Deploying Longhorn for persistent storage

Longhorn provides distributed block storage as a Container Storage Interface (CSI driver) for a
Kubernetes cluster. It enables applications to request and use Persistent Volumes (PV) via
Persistent Volume Claims (PVC). It is easy to deploy via Rancher’s built-in repository and easily
upgraded via the same process. Longhorn is only supported on Linux

1. Go to Apps then Charts.
2. Ensure the Rancher repo is selected (or use All)
3. Click the Longhorn box.

Charts

cis Exts Han er Cloud P
o m Deg m A Helm chart for P
o et =
A&
@ Helm feat
B vSphere CPI vSphere CSI Windows GMSA . .

4. Feel free to read the full content of the helm chart. It’s interesting.
5. Click the blue Install button.
6. Select the System project from the drop down. Click Next

| All charts have at least one version that is installable on clusters with Linux and Windows nodes unless otherwise indicated.

Longhorn Install: Step 1
100.12+up124 SetAppmetadata Values

7. Everything may be left default here. Feel free to look at the options. You can set a higher
resilience level if desired, but 3 pods per storage object is usually enough. Keep in mind
that we should avoid using on-node storage for critical persistent workloads.

8. Click Install.
9. A console will pop up and show you the installation progress. It will be similar to this:

W Install longhorn-system:longhorn 39~ £

| This process will help create the chart. Start by setting some basic information used by Rancher to manage the App.
‘ Instal
[

lues=/home/shell/heln/values-longhorn-crd-109.1.2-upl.2.4.yaml --version=109.1.2+up1.2.4 --waitatrue longhorn-crd /home/shell/heln/longhorn-

Frd, Jul 1 2022 10:23:47 am

1 --version=109.1.2+0p1.2.4 --wait=true longhorn-crd

1 2 5
Fri, Jul 1 2022 10:23:51 am
onghorn-100.1.2-

Fri, Jul 1 2022 10:23:51 am
Fri, Jul 1 2022 10:23:51 am

Fri, Jul 1 2022 10:23:51 am Rel

10. Once completed, you may click the pop-up console’s X.
11. There should now be a Longhorn option in the left panel. Click that.
12. Click the Longhorn management Ul button to pop it out

Overview

Powered By: Longhorn

This is the overview dashboard:

X | W Rancher x anghor X @ Welcome to php8B3 - My forum X | +

e | bttps//rancher-ds prdenv.courts.in

ces/langhom-

ntend:80/proxy/#/dashboard e »x 0@

Moritoring o8

DR Site

LONGHORN ; ,

e Dashboard

177 Gi 3

@ Healthy 0 @ Schedulable

@ Schedulable
Degraded 0 Raserved 3G

26i Unschedulable 0

@ inProgress 0

@ Fault Disabled] Disabled 0
Detached 0 Total 2016i Total 3

Total 0
vi24 Documentation GenerateSupportBundle File anissue Siack Py ey

The Node tab shows stats on the 3 nodes that are associated with this Longhorn deployment.
Each cluster will have its own list.

@ logn X | W Rancher x anghor X @ Welcome to php8B3 - My forum X | + =

€« C A Notsecure | hitps//rancher-ds.prdenv.courts.in.gov/k

ters/c-m-212bpwks/api/v)/namespac

ntend:80/proxy/#/node

Monitoring PROD Site DR Site Misc Appellate Apps

Rg LonGHoRN [

=2Node

Hase

Allocated

[Schedulable Ready capaics =y o o e

o ds-wrk-6) *« 6

@ v124 Documentation Generat Support Bundle Fileanlssue Siack prrs

7. Deploying Monitoring for cluster metrics,
performance, and stability

The monitoring infrastructure, which includes Grafana and Prometheus, can be installed via the
(gear) Install Monitoring link on the Cluster Dashboard. The link will just redirect you to the
Cluster tools screen where you can add cluster level features.

1. Click Install Monitoring.

2. The Cluster Tools screen will display:

Cluster Tools

| All charts have 3t least ion that is i l1abl clusters with Linux and ws nodes unless otherwise indicated. x
()" Alerting Drivers v CIS Benchmark A lstio
The manager for third-party webhook receivers used in Prometheus Alertmanager The cis-operator enables running CIS benchmark security scans on a kubernetes

Abasic Istio setup that installs with the istioctl. Refer to https:/istiojo/Tatest/ for
details.

D Logging s Longhorn 0 Monitoring =

Collects and filter logs using highly configurable CRDs. Powered by Banzal Cloud Longhornisa lock S for
Logging Operator.

Collects several related Helm charts, Grafana dashboards, and Prometheus rules
combined witl to provi erate end-to-end
Kubernetes cluster monitoring v etheus using the Prometheus Operator.

] JED £

Ltﬁl NeuVector @ OPAGatekeeper

Helm feature chart for NeuVector's core services Modifies Open Policy Agent’s upstream gatekeeper chart that provides policy:

based control for cloud native environments

3. Click Install on the Monitoring tile:

Monitoring

Collects several related Helm charts, Grafana dashboards, and Prometheus rules
combined with documentation and scripts to provide easy to operate end-to-end
Kubernetes cluster monitoring with Prometheus using the Prometheus Operator.

4. Install into the System project:

Monitoring Install: Step 1

100.1.2+up19.0.3 Set App metadata

I This process will help create the chart. Start by setting some basic information used by Rancher to manage the App.

Version

100.1.2+up19.0.3

System

5. Click next.

6. Default values are recommended, however additional configuration may be added. It
really depends on how long and persistent you need the logging data to be. Click Install.

7. A console for the deployment will display and begin scrolling as the monitoring tools are
deployed. It can take a few minutes for this to deploy due to the number of pods.

8. Of note, this is integrated into the Rancher Ul in some places. It is not the same as
deploying a generic Helm chart.

9. Once deployed, return to the Cluster Dashboard and scroll down. You should see a new
Metrics section. This has a lot of ‘at a glance’ information, but can also be used to
launch the Grafana Ul for more detailed investigation of the cluster’s statistics.

Range efres
DR summary onee 5
5

CPU Utilization Load Average Memory Utilization
100.0% 50 100.0%

80.0% 125 L

Disk Utilization Disk 1/0 Network Traffic

80.0% 500.0p/s

400.0p/s

300.0p/s

Network 1/0

8. Creating a Project and Namespace

Projects in Rancher enable role-based access control for deployments and maintenance of
applications, pods, etc. Namespaces are a native Kubernetes construct used to logically
separate deployments, services, pods, etc. Projects can also be used to apply quotas/limits to
resources.*It’s critical to note* that deleting a namespace or project will destroy underlying
applications deployed within it.

1. Click Cluster > Projects/Namespaces

Cluster A
© Projects/Namespaces
Nodes 3

Cluster Members

2. Click Create Project on the upper right.

Create Project

3. Provide a lowercase name for the project and optionally a description.
Project: Create

Name

workshop-project Project containing workshop deployments.

4. Click Create.
Scroll down to the new workshop-project and add a Namespace.
6. Click Create Namespace

o

Project: workshop-project

There are no namespaces defined.

7. Provide a unique lowercase name, optionally a description, and then apply any resource

reservations or limits you want to impose. Click Create.

espace: Create

Container Resource Limit

9. Deploying our phpBB Hello World application

In this section we will add a Helm repository to our Rancher install for accessing more

applications. Next we will choose to deploy an application, phpBB, which has both frontend and

backend server pods with persistent storage (which will live via Longhorn). We will also
customize the YAML file as part of the deployment so that we can properly access it from
outside the worker cluster. Without that change it would be internal only.

1.

10.
11.

Open Apps in the left panel and choose repositories.

Apps A
@ Charts
Installed Apps 0
Repositories 2
Recent Operations 0

This view will list the currently configured container Repositories for this cluster. This is a
per-cluster list. The default repositories for each cluster are Rancher and their partners
with tight integration.

Click Create on the upper right.

Provide a unique name for the repository. Like everything else in Rancher/Kubernetes it
must be lowercase or will give you validation errors.

Bitnami repo URL: https://charts.bitnami.com/bitnami

Repository: Create

bitnami The Bitnami chart list for a variety of pre-configured applications

https:/’Jcharts.b'\(nami&om:“b\'tnam‘

Click Create.

It will display In Progress while it ingests and refreshes the app inventory. It took 5
minutes for it to become Active on my Create.

http https:/charts.bitnami.com/bitnami 11mins

Next we will click on Apps > Charts.
Click into the Filter box and type “phpBB”. There should be one result in the list.

phpbb

Click the phpBB tile.
Click install in the upper right.

Select the workshop-namespaceNamespace and enter a unique name for your phpBB
instance (lowercase). Then click Next.

[9 phpbb ggstaII:Stepl

12.2.11 t App metadata

This process will help create the chart. Start by setting some basic information used by Rancher to manage the App.

To install the app into 2 new namespace enter it's name in the Namespace field and select it.

Namespace Name

workshop-namespace david-phpbb)

12. The next screen automatically changes to the Edit YAML user interface.
13. Scroll down to line 179

Change:

Type: LoadBalancer

To:

Type: NodePort

Ph 33 AT

ype: NodePort|

The reason we are changing this is that we do not have Ingress or LoadBalancers
configured. In Kubernetes, every node is connected in a mesh. Even if a Pod is running
on Node 1, exposing the Service as a NodePort will allow a connection on Node 3 to still
return responses. In this way, an external load balancer, like an F5, Citrix Netscaler, or
Nginx proxy/reverse-proxy, can effectively load balance traffic across all nodes for a
given port and *always* reach the expected destination.

14. Click Install.

15. It's important to see that there is some guidance at the bottom of the deployment
console panel at the bottom.

16. 1t explains how to get your NodePort value and admin password via the kubectl CLI. You can also find this via the user interface within
Rancher. Your commands will be similar to this but not identical:

#1. Access you phpBB instance with:
export NODE_PORT=$(kubectl get --namespace workshop-namespace -o jsonpath="{.spec.ports[@].nodePort}" services david-phpbb) export

NODE_IP=$(kubectl get nodes --namespace workshop-namespace -o jsonpath="{.items[@].status.addresses[@].address}") echo "phpBB URL:
http://$NODE_IP:$NODE_PORT/" #2. Login with the following credentials echo Username: user
echo Password: $(kubectl get secret --namespace workshop-namespace david-phpbb -o jsonpath="{.data.phpbb-password}" | base64 -d)

1 7. To get to the command CLI from Rancher, click the terminal icon in the upper right:

v

& =R

W Install workshop-namespace:david-phpbb E] 2 Kubectl: ds-worker-2

i-phpkb -c jsonpat!

--namespace workshop-namespace d .data.phpbb-password}” |

18. Now that we have our NodePort address, Administrator user name, and password combination, we can access phpBB!
19. Open a browser to your combination. Mine happens to be http://10.32.12.160:31388

A Not secure | 10.32.12.160:31388

PROD Site DR Site IDPA5800 1DPA4400 Misc. Appellate Apps FWs

hpBB
A little text to describe your forum Search Q &
forum W software -

= Quick links © FAQ (& Register O Login
Board index

It is currently Sat Jul 02, 2022 2:21 pm

Your first forum 3 1 Welcome to phpBB3
% Description of your first forum. 4 > by 7}

v user
Sat Jul 02, 2022 2:13 pm

LOGIN « REGISTER
Username: Password: | Remember me (7]

WHO IS ONLINE

In total there is 1 user online :: 0 registered, 0 hidden and 1 guest (based on users active over the past 5 minutes)
Most users ever online was 1 on Sat Jul 02, 2022 2:21 pm

STATISTICS

Total posts 1 Total topics 1 » Total members 1 « Our newest member user

Board index 1 Delete cookies All times are UTC

20. Now you may click the login link and click through the buttons - have fun; it's yours!

21. Next we will investigate all of the components that were deployed as part of this phpBB
app installation.

10. Components (Resources) of the phpBB
application

Upon completing the deployment of our phpBB app, several components were created and in
this section we will briefly cover them at a medium-high level. The goal is to give you a basic
understanding of the component types. The descriptions below are from the Kubernetes.io
documentation.

Installed Apps
¥ Download YAML 8 Delete = -
State Name Chart Upgradable Resources Age

Namespace: workshop-namespace

(Deployed) david-phpbb phpbb:12.2.11 2.8days

Installed App

Applications installed via the Charts screen will be displayed in the “Installed Apps” menu item.
We'll click the david-phpbb link to enter that App.

Detail YAML ‘ :

Installed App: david-phpbb (D

Namespace: workshop ace Age:2.8days -
Resources Values YAML Chart README Release Notes
State Type Name Namespace

Active Secret david-phpbb workshop-namespace
Bound PersistentVolumeClaim david-phpbb workshop-namespace
Ac Service javid-phpbb workshop-namespace
Active Deployment david-phpbb workshop-namespace

ServiceAccount david-phpb workshop-namespace

‘[.‘ “‘

Secret david-phpbb-mariadb workshop-namespace
Active. ConfigMap david-phpbb-mariadb workshop-namespace
Active Service david-phpbb-mariadt workshop-namespace
Active StatefulSet david-phpbb-mariadb workshop-namespace

The resources list is displayed. These Resources are the components that combine to “be” your
app. We'll dive into each of these a little more.

Deployment

Deployment: david-ph

; m SHL e i
y Pod Restarts: 0 .

Image: bitnami/phpbb:3.3.8-debian-11-r1 Ready: 1/1 Up-to-date: 1 Available: 1
Endpoints: 31388/TCP, 31407/TCP

Namespace: wor

Labels: appkubernetes.io/component: phpbb app.kubernetes.io/instance: david-phpbb app kubernetes.io/managed-by: Helm appkubernetes.io/name: phpbb helm.sh/chart: phpbb-12.2.11

Annotations: Show 3 annotations
Pods by State Scale ‘f‘ 1 F
Running
t n Re esource
< Download YAML i Delete
State Name ¢ Node Image Restarts
david-phpbb-7f577b495c-vdpg ds-wrk-4 bitnami/phpbb:3.3.8-debian-11-r1 0

A Deployment provides declarative updates for Pods and ReplicaSets.

You describe a desired state in a Deployment, and the Deployment Controller changes the
actual state to the desired state at a controlled rate. You can define Deployments to create new
ReplicaSets, or to remove existing Deployments and adopt all their resources with new
Deployments.

ConfigMap

ConﬁgMap:david—phpbb—rﬁnarriadb Active e won |IB

Namespace: workshop- Age: 2.8 days

: | appkubernetes.ol primary appkubernetes.io/instance: david-phpbb appkubernetes.io/managed-by: Helm appkubernetesio/name: mariadb helm.sh/chart: mariadb-11.0.13

my.cnf ‘] Copy ‘
(mysqld]

skip-name-resolve

explicit_defaults_for_timestamp

basedir=/opt/bitnami/mariadb

plugin_dir=/opt/bitnami/mariadb/plugin

port=3306

A ConfigMap is an API object used to store non-confidential data in key-value pairs. Pods can

consume ConfigMaps as environment variables, command-line arguments, or as configuration
files in a volume. A ConfigMap allows you to decouple environment-specific configuration from
your container images, so that your applications are easily portable.

CAUTION: ConfigMap does not provide secrecy or encryption. If the data you want to store are
confidential, use a Secret rather than a ConfigMap, or use additional (third party) tools to keep
your data private.

Secret

Se

e

t: david-phpbb (Acti

s appkubernetes.io/component: phpbb app kubernetes.io/instance: david-phpbb app kubernetesio/managed-by:Helm appkubernetes.io/name: phpbb helm.sh/chart: phpbb-12.2.11

Type: Secret

Annotations: Show 2 annotatio

phpbb-password] Cor ‘

smtp-password] Copy ‘

<Empty>

A Secret is an object that contains a small amount of sensitive data such as a password, a
token, or a key. Such information might otherwise be put in a Pod specification or in a container
image. Using a Secret means that you don't need to include confidential data in your application
code.

Because Secrets can be created independently of the Pods that use them, there is less risk of
the Secret (and its data) being exposed during the workflow of creating, viewing, and editing
Pods. Kubernetes, and applications that run in your cluster, can also take additional precautions
with Secrets, such as avoiding writing secret data to nonvolatile storage.

Secrets are similar to ConfigMaps but are specifically intended to hold confidential data.

CAUTION: Kubernetes Secrets are, by default, stored unencrypted in the API server's
underlying data store (etcd). Anyone with API access can retrieve or modify a Secret, and so

can anyone with access to etcd. Additionally, anyone who is authorized to create a Pod in a
namespace can use that access to read any Secret in that namespace; this includes indirect
access such as the ability to create a Deployment.

In order to safely use Secrets, take at least the following steps:

Enable Encryption at Rest for Secrets.

Enable or configure RBAC rules that restrict reading and writing the Secret. Be aware that
secrets can be obtained implicitly by anyone with the permission to create a Pod.

Where appropriate, also use mechanisms such as RBAC to limit which principals are allowed to
create new Secrets or replace existing ones.

Service

|

odePort Cluster IP: 10.43.120.122 Session Affinity: None

app kubernetes.io/component: phpbb app.kubernetes.io/instance: david-phpbb app kubernetes.io/r d-by: Helm appkub: s.io/name: phpbb helm.sh/chart: phpbb-12.2.11

State Name Namespace Image Ready Restarts P Node Age

workshop-namespace bitnami/phpbb:3.3.8-debian-11-r1 1/1 0 10.42.203.224 is 4 2.8days

An abstract way to expose an application running on a set of Pods as a network service. With
Kubernetes you don't need to modify your application to use an unfamiliar service discovery
mechanism. Kubernetes gives Pods their own IP addresses and a single DNS name for a set
of Pods, and can load-balance across them.

*This is where our customization to use the defined NodePort service came into play. By clicking
the Ports tab, we can see the two ports created for this service.

Name Port Protocol Target Node Port Public Ports

https 443 TCP https 31407

http 80 TCP http 31388

Service Account

ServiceAccount: david-phpbb-mariadb (Active i ‘ : ‘
Namespace: workshop-namespace: Age: 2.8 days -

Namespace Name * Description
workshop-namespace david-phpbb-mariadb

Service Account .
Service Account

Automount Service Account Token

Image Pull Secrets

Pull Secrets

Kubernetes distinguishes between the concept of a user account and a service account
for a number of reasons:

e User accounts are for humans. Service accounts are for processes, which run in
pods.

e User accounts are intended to be global. Names must be unique across all
namespaces of a cluster. Service accounts are namespaced.

e Typically, a cluster's user accounts might be synced from a corporate database,
where new user account creation requires special privileges and is tied to
complex business processes. Service account creation is intended to be more
lightweight, allowing cluster users to create service accounts for specific tasks by
following the principle of least privilege.

Auditing considerations for humans and service accounts may differ.

e A config bundle for a complex system may include definition of various service
accounts for components of that system. Because service accounts can be
created without many constraints and have namespaced names, such config is

portable.
Persistent Volume Claim
eyl 0 letionian 2 spdom e wa []

Namespace Name " Description
workshop-namespace david-phpbb

I Volume Claim 5
Volume Claim

Source Persistent Volume

pvc-ade28828-252e-445e-341b-1b3d02df52b3 (Bound)

Use an existing Persistent Volume

Request Storage
8

A PersistentVolume (PV) is a piece of storage in the cluster that has been provisioned by an
administrator or dynamically provisioned using Storage Classes. It is a resource in the cluster
just like a node is a cluster resource. PVs are volume plugins like Volumes, but have a lifecycle

independent of any individual Pod that uses the PV. This API object captures the details of the
implementation of the storage, be that NFS, iSCSI, or a cloud-provider-specific storage system.

A PersistentVolumeClaim (PVC) is a request for storage by a user. It is similar to a Pod. Pods

consume node resources and PVCs consume PV resources. Pods can request specific levels

of resources (CPU and Memory). Claims can request specific size and access modes (e.qg.,

they can be mounted ReadWriteOnce, ReadOnlyMany or ReadWriteMany, see AccessModes).

While PersistentVolumeClaims allow a user to consume abstract storage resources, it is

common that users need PersistentVolumes with varying properties, such as performance, for

different problems. Cluster administrators need to be able to offer a variety of
PersistentVolumes that differ in more ways than size and access modes, without exposing
users to the details of how those volumes are implemented. For these needs, there is the

StorageClass resource.

Statefut Sets

1age: bitnami/mariadb:10.6.8-debian-11-r3 Ready: 1/1

app kubernetes.io/c primary appkubernetes.i

Pods by State

1

Running

State Name o

StatefulSet is the workload API object used to manage stateful applications.

fulSet: david-phpbb-mariadb (Active

ays PodRe

starts: 0

Node

Image

bitnami/mariadb:10.6.8-debian-11-r3

iofinstance: david-phpbb app kubernetes.io/managed-by: Helm app.kubernetes.io/name: mariadb helm.sh/chart: mariadb-11.0.13

Restarts

0

YAML ‘

Scale =it

Manages the deployment and scaling of a set of Pods, and provides guarantees about the

ordering and uniqueness of these Pods.

Like a Deployment, a StatefulSet manages Pods that are based on an identical container spec.

Unlike a Deployment, a StatefulSet maintains a sticky identity for each of their Pods. These
pods are created from the same spec, but are not interchangeable: each has a persistent
identifier that it maintains across any rescheduling.

If you want to use storage volumes to provide persistence for your workload, you can use a

StatefulSet as part of the solution. Although individual Pods in a StatefulSet are susceptible to
failure, the persistent Pod identifiers make it easier to match existing volumes to the new Pods

that replace any that have failed.

Limitations

The storage for a given Pod must either be provisioned by a PersistentVolume
Provisioner based on the requested storage class, or pre-provisioned by an admin.
Deleting and/or scaling a StatefulSet down will not delete the volumes associated with
the StatefulSet. This is done to ensure data safety, which is generally more valuable than
an automatic purge of all related StatefulSet resources.

StatefulSets currently require a Headless Service to be responsible for the network
identity of the Pods. You are responsible for creating this Service.

StatefulSets do not provide any guarantees on the termination of pods when a
StatefulSet is deleted. To achieve ordered and graceful termination of the pods in the
StatefulSet, it is possible to scale the StatefulSet down to O prior to deletion. ® When
using Rolling Updates with the default Pod Management Policy (OrderedReady), it's
possible to get into a broken state that requires manual intervention to repair.

https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/README.md
https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/README.md
https://github.com/kubernetes/examples/tree/master/staging/persistent-volume-provisioning/README.md
https://kubernetes.io/docs/concepts/services-networking/service/#headless-services
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#rolling-updates
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#pod-management-policies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#pod-management-policies
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#forced-rollback
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#forced-rollback

